
Package: dataReporter (via r-universe)
September 15, 2024

Type Package

Title Reproducible Data Screening Checks and Report of Possible Errors

Version 1.0.4

Date 2022-11-24

Description Data screening is an important first step of any
statistical analysis. 'dataReporter' auto generates a
customizable data report with a thorough summary of the checks
and the results that a human can use to identify possible
errors. It provides an extendable suite of test for common
potential errors in a dataset. See Petersen AH, Ekstrøm CT
(2019). ``dataMaid: Your Assistant for Documenting Supervised
Data Quality Screening in R.'' _Journal of Statistical
Software_, *90*(6), 1-38 <doi:10.18637/jss.v090.i06> for more
information.

URL https://github.com/ekstroem/dataReporter

BugReports https://github.com/ekstroem/dataReporter/issues

Imports ggplot2, gridExtra, haven, htmltools, magrittr, methods,
pander, rmarkdown (>= 1.10), robustbase (>= 0.93-2), stringi,
whoami

Suggests knitr, testthat

Depends R (>= 3.5.0)

VignetteBuilder knitr

SystemRequirements pandoc (>= 2.0; https://pandoc.org), git, whoami

Encoding UTF-8

LazyData true

ByteCompile true

License GPL-2

RoxygenNote 7.2.2

1

https://doi.org/10.18637/jss.v090.i06
https://github.com/ekstroem/dataReporter
https://github.com/ekstroem/dataReporter/issues

2 Contents

Collate 'aggregateForBarplot.R' 'aggregateForHistogram.R'
'allCheckFunctions.R' 'allClasses.R' 'allSummaryFunctions.R'
'allVisualFunctions.R' 'allXFunctions.R' 'makeXFunction.R'
'visualFunction.R' 'basicVisual.R' 'summaryFunction.R'
'centralValue.R' 'check.R' 'checkResult.R' 'messageGenerator.R'
'checkFunction.R' 'identifyMissing.R' 'minMax.R' 'classes.R'
'countMissing.R' 'dataReporter-package.R'
'dataReporter_as_factor.R' 'description.R'
'identifyCaseIssues.R' 'identifyLoners.R' 'identifyNums.R'
'identifyOutliers.R' 'identifyOutliersTBStyle.R'
'identifyWhitespace.R' 'isCPR.R' 'isSingular.R' 'isEmpty.R'
'isKey.R' 'isSupported.R' 'makeCodebook.R' 'makeDataReport.R'
'misc.R' 'quartiles.R' 'refCat.R' 'render.R' 'setChecks.R'
'setSummaries.R' 'setVisuals.R' 'smartNum.R' 'standardVisual.R'
'summarize.R' 'summaryResult.R' 'tableVisual.R'
'uniqueValues.R' 'unpackLabelled.R' 'utility.R'
'variableType.R' 'visualize.R'

Repository https://ekstroem.r-universe.dev

RemoteUrl https://github.com/ekstroem/datareporter

RemoteRef HEAD

RemoteSha cd8c940cc9c554b4c9717b2050e1bf45c0a5fe60

Contents
allCheckFunctions . 4
allClasses . 4
allSummaryFunctions . 5
allVisualFunctions . 5
artData . 6
basicVisual . 7
basicVisualCFLB . 8
bigPresidentData . 8
centralValue . 9
check . 10
checkFunction . 12
checkResult . 15
classes . 16
countMissing . 16
defaultCharacterChecks . 17
defaultCharacterSummaries . 18
defaultDateChecks . 18
defaultDateSummaries . 19
defaultFactorChecks . 20
defaultFactorSummaries . 20
defaultHavenlabelledChecks . 21
defaultHavenlabelledSummaries . 21

Contents 3

defaultIntegerChecks . 22
defaultIntegerSummaries . 23
defaultLabelledChecks . 23
defaultLabelledSummaries . 24
defaultLogicalChecks . 25
defaultLogicalSummaries . 25
defaultNumericChecks . 26
defaultNumericSummaries . 26
description . 27
exampleData . 28
identifyCaseIssues . 30
identifyLoners . 31
identifyMissing . 32
identifyNums . 33
identifyOutliers . 34
identifyOutliersTBStyle . 35
identifyWhitespace . 36
isCPR . 37
isKey . 38
isSingular . 39
isSupported . 40
makeCodebook . 41
makeDataReport . 41
messageGenerator . 46
minMax . 48
presidentData . 49
quartiles . 50
refCat . 51
render . 51
setChecks . 52
setSummaries . 53
setVisuals . 55
smartNum . 57
standardVisual . 57
summarize . 58
summaryFunction . 60
summaryResult . 62
tableVisual . 62
testData . 63
toyData . 64
uniqueValues . 65
variableType . 66
visualFunction . 67
visualize . 68
whoami_available . 70

Index 72

4 allClasses

allCheckFunctions Overview of all available checkFunctions

Description

Produce an overview of all functions of class checkFunction available in the workspace or im-
ported from packages. This overview includes the descriptions and a list of what classes the func-
tions are each intended to be called on.

Usage

allCheckFunctions()

Value

An object of class functionSummary. This object has entries $name (the function names), $description
(the function descriptions, as obtained from their description attributes) and $classes (the classes
each function is indeded to be called on, as obtained from their classes attributes).

See Also

checkFunction allVisualFunctions allSummaryFunctions

Examples

allCheckFunctions()

allClasses Vector of all variable classes in dataReporter

Description

Returns the names of the eight data classes for which dataReporter is implemented, namely
"character", "Date", "factor", "integer", "labelled", "haven_labelled", "logical" and
"numeric".

Usage

allClasses()

Examples

allClasses()

allSummaryFunctions 5

allSummaryFunctions Overview of all available summaryFunctions

Description

Produce an overview of all functions of class summaryFunction available in the workspace or
imported from packages. This overview includes the descriptions and a list of what classes the
functions are each intended to be called on.

Usage

allSummaryFunctions()

Value

An object of class functionSummary. This object has entries $name (the function names), $description
(the function descriptions, as obtained from their description attributes) and $classes (the classes
each function is indeded to be called on, as obtained from their classes attributes).

See Also

summaryFunction allVisualFunctions allCheckFunctions

Examples

allSummaryFunctions()

allVisualFunctions Overview of all available visualFunctions

Description

Produce an overview of all functions of class visualFunction available in the workspace or im-
ported from packages. This overview includes the descriptions and a list of what classes the func-
tions are each intended to be called on.

Usage

allVisualFunctions()

Value

An object of class functionSummary. This object has entries $name (the function names), $description
(the function descriptions, as obtained from their description attributes) and $classes (the classes
each function is indeded to be called on, as obtained from their classes attributes).

6 artData

See Also

visualFunction allCheckFunctions allSummaryFunctions

Examples

allVisualFunctions()

artData Semi-artificial data about masterpieces of art

Description

A dataset with information about 200 painting and their painters. Each observation in the dataset
corresponds to a painting. A single artificial variable, namely an artist ID variable, has been in-
cluded. Otherwise the information should be truthful.

Usage

artData

Format

A data frame with 200 rows and 11 variables.

ArtistID A unique ID used for cataloging the artists (fictional).
ArtistName The name of the artist.
NoOfMiddlenames The number of middlenames the artist has.
Title The title of the painting.
Year The approximate year in which the painting was made.
Location The current location of the painting.
Continent The continent of the current location of the painting.
Width The width of the painting, in centimeters.
Height The height of the painting, in centimers.
Media The media/materials of the painting.
Movement The artistic movement(s) the painting belongs to.

Source

Semi-artificial dataset constructed based on the Master Works of Art dataset available from Data
Explorer.

Examples

data(artData)

https://www.data-explorer.com/data/
https://www.data-explorer.com/data/

basicVisual 7

basicVisual Produce distribution plots in the base R (graphics) style using plot
and barplot

Description

Plot the distribution of a variable, depending on its data class, using the base R plotting functions.
Note that basicVisual is a visualFunction, compatible with the visualize and makeDataReport
functions.

Usage

basicVisual(v, vnam, doEval = TRUE)

Arguments

v The variable (vector) to be plotted.

vnam The name of the variable which will appear as the title of the plot.

doEval If TRUE, the plot itself is returned. Otherwise, the function returns a character
string containing standalone R code for producing the plot.

Details

For character, factor, logical and (haven_)labelled variables, a barplot is produced. For numeric,
integer or Date variables, basicVisual produces a histogram instead. Note that for integer and nu-
meric variables, all non-finite (i.e. NA, NaN, Inf) values are removed prior to plotting. For character,
factor, (haven_)labelled and logical variables, only NA values are removed.

See Also

visualize, standardVisual

Examples

#Save a variable
myVar <- c(1:10)
#Plot a variable
basicVisual(myVar, "MyVar")

#Produce code for plotting a variable
basicVisual(myVar, "MyVar", doEval = FALSE)

8 bigPresidentData

basicVisualCFLB importFrom stats na.omit

Description

importFrom stats na.omit

Usage

basicVisualCFLB(v, vnam, doEval = TRUE)

Arguments

v The variable (vector) to be plotted.

vnam The name of the variable which will appear as the title of the plot.

doEval If TRUE, the plot itself is returned. Otherwise, the function returns a character
string containing standalone R code for producing the plot.

bigPresidentData Semi-artificial data about the US presidents (extended version)

Description

A dataset with information about the first 45 US presidents as well as a 46th person, who is not a
US president, and a duplicate of one of the 45 actual presidents. The dataset was constructed to
show the capabilities of dataReporter and therefore, it has been constructed to include errors and
miscodings. Each observation in the dataset corresponds to a person. The dataset uses the non-
standard class Name which is simply an attribute that has been added to two variables in order to
show how dataReporter handles non-supported classes. Note that the dataset is an extended and
more error-filled version of the dataset presidentData which is also included in the package.

Usage

bigPresidentData

Format

A data frame with 47 rows and 15 variables.

lastName A Name type variable containing the last name of the president.

firstName A Name type variable containing the first name of the president.

orderOfPresidency A factor variable indicating the order of the presidents (with George Wash-
ington as number 1 and Donald Trump as number 45).

birthday A Date variable with the birthday of the president.

centralValue 9

dateOfDeath A Date variable with the date of the president’s death.

stateOfBirth A character variable with the state in which the president was born.

party A charcter variable with the party to which the president was associated.

presidencyBeginDate A Date variable with the date of inauguration of the president.

presidencyEndDate A Date variable with the date at which the presidency ends.

assassinationAttempt A numeric variable indicating whether there was an assassination attempt
(1) or not (0) on the president.

sex A factor variable with the sex of the president.

ethnicity A factor variable with the ethnicity of the president.

presidencyYears A numeric variable with the duration of the presidency, in years.

ageAtInauguration A character variable with the age at inauguration.

favoriteNumber A complex type variable with a fictional favorite number for each president.

Source

Artificial dataset constructed based on the US president dataset available from Data Explorer.

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

Examples

data(bigPresidentData)

centralValue summaryFunction for central values

Description

A summaryFunction, intended to be called from summarize, which returns the central value of a
variable. For numeric and integer variables, this is the median. For character, factor, (have_)labelled,
Date and logical variables, the central value is the mode (i.e. the value that occurs the largest number
of times).

Usage

centralValue(v, ...)

https://www.data-explorer.com/data/
https://doi.org/10.18637/jss.v090.i06

10 check

Arguments

v A variable (vector).

... Extra arguments to be passed to class-specific functions. These incluse maxDecimals
(default is 2) which controls the rounding of integer and numeric values.

Details

Note that NA, NaN and Inf values are ignored for numeric and integer variables, while only NA
values are ignored for factor, character, Date and (haven_)labelled variables. No values are ignored
for logical variables.

Value

An object of class summaryResult with the following entries: $feature (the mode/median),$result
(the central value of v) and $value (identical to $result).

If the mode is returned and it is not uniquely determined, the first value qualifying as a mode is
returned, when the variable is sorted according to sort.

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

#central value of an integer variable:
centralValue(c(rep(1, 25), rep(2, 10), rep(3, 20)))

#central value of a character variable:
centralValue(as.character(c(rep(1, 20), rep(2, 10), rep(3, 20))))

check Perform checks of potential errors in variable/dataset

Description

Run a set of validation checks to check a variable vector or a full dataset for potential errors. Which
checks are performed depends on the class of the variable and on user inputs.

Usage

check(v, nMax = 10, checks = setChecks(), ...)

check 11

Arguments

v the vector or the dataset (data.frame) to be checked.

nMax If a check is supposed to identify problematic values, this argument controls if
all of these should be pasted onto the outputted message, or if only the first nMax
should be included. If set to Inf, all problematic values are printed.

checks A list of checks to use on each supported variable type. We recommend using
setChecks for creating this list and refer to the documentation of this function
for more details.

... Other arguments that are passed on to the checking functions. These includes
general parameters controlling how the check results are formatted (e.g. maxDecimals,
which controls the number of decimals printed for numerical, problematic val-
ues).

Details

It should be noted that the default options for each variable type are returned by calling e.g.
defaultCharacterChecks(), defaultFactorChecks(), defaultNumericChecks(), etc. A com-
plete overview of all default options can be obtained by calling setChecks(). Moreover, all
available checkFunctions (including both locally defined functions and functions imported from
dataReporter or other packages) can be viewed by calling allCheckFunctions().

Value

If v is a variable, a list of objects of class checkResult, which each summarizes the result of a
checkFunction call performed on v. See checkResult for more details. If V is a data.frame, a
list of lists of the form above is returned instead with one entry for each variable in v.

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

See Also

setChecks, allCheckFunctions checkResult checkFunction, defaultCharacterChecks, defaultFactorChecks,
defaultLabelledChecks, defaultHavenlabelledChecks, defaultNumericChecks, defaultIntegerChecks,
defaultLogicalChecks, defaultDateChecks

Examples

x <- 1:5
check(x)

#Annoyingly coded missing as 99
y <- c(rnorm(100), rep(99, 10))
check(y)

#Check y for outliers and print 4 decimals for problematic variables

https://doi.org/10.18637/jss.v090.i06

12 checkFunction

check(y, checks = setChecks(numeric = "identifyOutliers"), maxDecimals = 4)

#Change what checks are performed on a variable, now only identifyMissing is called
for numeric variables
check(y, checks = setChecks(numeric = "identifyMissing"))

#Check a full data.frame at once
data(cars)
check(cars)

#Check a full data.frame at once, while changing the standard settings for
#several data classes at once. Here, we ommit the check of miscoded missing values for factors
#and we only do this check for numeric variables:
check(cars, checks = setChecks(factor = defaultFactorChecks(remove = "identifyMissing"),

numeric = "identifyMissing"))

checkFunction Create an object of class checkFunction

Description

Convert a function, f, into an S3 checkFunction object. This adds f to the overview list returned
by an allCheckFunctions() call.

Usage

checkFunction(f, description = NULL, classes = NULL)

Arguments

f A function. See details and examples below for the exact requirements of this
function.

description A character string describing the check performed by f. If NULL (the default),
the name of f will be used instead.

classes The classes for which f is intended to be called. If NULL (the default), one of
two things happens. If f is not a S3 generic function, the classes attribute of
f will be an empty character string. If f is a S3 generic function, an automatic
look-up for methods will be conducted, and the classes attribute will then be
filled out automatically. Note that the function allClasses (listing all classes
used in dataReporter) might be useful.

Details

checkFunction represents the functions used in check and makeDataReport for performing error
checks and quality control on variables in dataset.

An example of defining a new checkFunction is given below. Note that the minimal requirements
for such a function (in order for it to be compatible with check() and makeDataReport()) is the

checkFunction 13

following input/output-structure: It must input at least two arguments, namely v (a vector variable)
and Additional implemented arguments from check() and makeDataReport() include nMax
and maxDecimals, see e.g. the pre-defined checkFunction identifyMissing for more details
about how these arguments should be used. The output must be a list with at least the two entries
$problem (a logical indicating whether a problem was found) and $message (a character string mes-
sage describing the problem). However, if the result of a checkFunction is furthermore appended
with a $problemValues entry (including the values from the variable that caused the problem, if
relevant) and converted to a checkResult object, a print() method also becomes available for
consistent formatting of checkFunction results.

Note that all available checkFunctions are listed by the call allCheckFunctions() and we recommed
looking into these function, if more knowledge about checkFunctions is required.

Value

A function of class checkFunction which has to attributes, namely classes and description.

See Also

allCheckFunctions, check, makeDataReport, messageGenerator, checkResult

Examples

#Define a minimal requirement checkFunction that can be called
#from check() and makeDataReport(). This function checks whether all
#values in a variable are of equal length and that this
#length is then also larger than 10:
isID <- function(v, nMax = NULL, ...) {

out <- list(problem = FALSE, message = "")
if (class(v) %in% c("character", "factor", "labelled", "haven_labelled", "numeric", "integer")) {

v <- as.character(v)
lengths <- nchar(v)
if (all(lengths > 10) & length(unique(lengths)) == 1) {

out$problem <- TRUE
out$message <- "Warning: This variable seems to contain ID codes!"
}

}
out

}

#Convert it into a checkFunction
isID <- checkFunction(isID, description = "Identify ID variables (long, equal length values)",

classes = allClasses())

#Call isID
isID(c("12345678901", "23456789012", "34567890123", "45678901234"))

#isID now appears in a allCheckFunctions() call:
allCheckFunctions()

#Define a new checkFunction using messageGenerator() for generating

14 checkFunction

#the message and checkResult() for getting a printing method
#for its output. This function identifies values in a variable
#that include a colon, surrounded by alphanumeric characters. If
#at least one such value is found, the variable is flagged as
#having a problem:
identifyColons <- function(v, nMax = Inf, ...) {
v <- unique(na.omit(v))
problemMessage <- "Note: The following values include colons:"
problem <- FALSE
problemValues <- NULL
problemValues <- v[sapply(gregexpr("[[:xdigit:]]:[[:xdigit:]]", v),

function(x) all(x != -1))]
if (length(problemValues) > 0) {

problem <- TRUE
}
problemStatus <- list(problem = problem,

problemValues = problemValues)
outMessage <- messageGenerator(problemStatus, problemMessage, nMax)
checkResult(list(problem = problem,

message = outMessage,
problemValues = problemValues))

}

#Make it a checkFunction:
identifyColons <- checkFunction(identifyColons,

description = "Identify non-suffixed nor -prefixed colons",
classes = c("character", "factor", "labelled", "haven_labelled"))

#Call it:
identifyColons(1:100)
identifyColons(c("a:b", 1:10, ":b", "a:b:c:d"))

#identifyColons now appears in a allCheckFunctions() call:
allCheckFunctions()

#Define a checkFunction that looks for negative values in numeric
#or integer variables:
identifyNeg <- function(v, nMax = Inf, maxDecimals = 2, ...) {

problem <- FALSE
problemValues <- printProblemValues <- NULL
problemMessage <- "Note: The following negative values were found:"
negOcc <- unique(v[v < 0])
if (length(negOcc > 0)) {
problemValues <- negOcc
printProblemValues <- round(negOcc, maxDecimals)
problem <- TRUE

}
outMessage <- messageGenerator(list(problem = problem,

problemValues = printProblemValues), problemMessage, nMax)
checkResult(list(problem = problem,

message = outMessage,
problemValues = problemValues))

}

checkResult 15

#Make it a checkFunction
identifyNeg <- checkFunction(identifyNeg, "Identify negative values",

classes = c("integer", "numeric"))

#Call it:
identifyNeg(c(0:100))
identifyNeg(c(-20.1232323:20), nMax = 3, maxDecimals = 4)

#identifyNeg now appears in a allCheckFunctions() call:
allCheckFunctions()

checkResult Create object of class checkResult

Description

Convert a list resulting from the checks performed in a checkFunction into a checkResult object,
thereby supplying it with a print() method.

Usage

checkResult(ls)

Arguments

ls A list with entries $problem (logical indicating whether a problem was found),
$message (a character string containing a message describing the problem) and
$problemValues (the values in the checked variables that were marked as prob-
lematic). Note that $message and $problemValues can be left empty (i.e. ""
and NULL, respectively), if they are not relevant.

Value

A S3 object of class checkResult, identical to the inputted list, ls, except for its class attribute.

See Also

checkFunction

16 countMissing

classes Extract the contents of the attribute classes

Description

If the object, x, is itself of class checkFunction, summaryFunction or visualFunction, the con-
tents of x’s attribute classes is returned. Otherwise, NULL is returned.

Usage

classes(x)

classes(x) <- value

Arguments

x The object for which the classes attribute should be extracted.

value New value

Value

The classes for which x is intended to be called, given as a vector of characters.

Examples

#Extract the classes of the checkFunction identifyMissing
classes(identifyMissing)

#Extract the classes of the summaryFunction minMax
classes(minMax)

#Extract the classes of the visualFunction basicVisual
classes(basicVisual)

countMissing Summary function for missing values

Description

A summaryFunction, intended to be called from summarize (and makeDataReport), which counts
the number of missing (NA) values in a variable.

Usage

countMissing(v, ...)

defaultCharacterChecks 17

Arguments

v A variable (vector).

... Not in use.

Value

A summaryResult object with the following entries: $feature ("No. missing obs."), $result (the
number and percentage missing observations) and $value (the number of missing observations).

See Also

summarize, allSummaryFunctions, summaryFunction, summaryResult

Examples

countMissing(c(1:100, rep(NA, 10)))

defaultCharacterChecks

Default checks for character variables

Description

Default options for which checks to perform on character type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultCharacterChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

18 defaultDateChecks

defaultCharacterSummaries

Default summary functions for character variables

Description

Default options for which summaries to apply on character type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultCharacterSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

variableType, countMissing, uniqueValues, centralValue

Examples

#remove "variableType" from the summaries:
defaultCharacterSummaries(remove = "variableType")

defaultDateChecks Default checks for Date variables

Description

Default options for which checks to perform on Date type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultDateChecks(remove = NULL, add = NULL)

defaultDateSummaries 19

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultDateSummaries Default summary functions for Date variables

Description

Default options for which summaries to apply on Date type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultDateSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

variableType, countMissing, uniqueValues, centralValue, minMax, quartiles

Examples

defaultDateSummaries()

20 defaultFactorSummaries

defaultFactorChecks Default checks for factor variables

Description

Default options for which checks to perform on factor type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultFactorChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultFactorSummaries

Default summary functions for factor variables

Description

Default options for which summaries to apply on factor type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultFactorSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

defaultHavenlabelledChecks 21

See Also

codevariableType, countMissing, uniqueValues, centralValue

Examples

#remove "countMissing" for the summaries:
defaultFactorSummaries(remove = "countMissing")

defaultHavenlabelledChecks

Default checks for haven_labelled variables

Description

Default options for which checks to perform on haven_labelled type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultHavenlabelledChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultHavenlabelledSummaries

Default summary functions for haven_labelled variables

Description

Default options for which summaries to apply on haven_labelled type variables in check and
makeDataReport, possibly user-modified by adding extra function names using add or removing
default function names with remove.

Usage

defaultHavenlabelledSummaries(remove = NULL, add = NULL)

22 defaultIntegerChecks

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

variableType, countMissing, uniqueValues, centralValue

Examples

#remove "centralValue":
defaultHavenlabelledSummaries(remove = "centralValue")

defaultIntegerChecks Default checks for integer variables

Description

Default options for which checks to perform on integer type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultIntegerChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultIntegerSummaries 23

defaultIntegerSummaries

Default summary functions for integer variables

Description

Default options for which summaries to apply on integer type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultIntegerSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

variableType, countMissing, uniqueValues, centralValue, quartiles, minMax

Examples

#remove "countMissing":
defaultIntegerSummaries(remove = "countMissing")

defaultLabelledChecks Default checks for labelled variables

Description

Default options for which checks to perform on labelled type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultLabelledChecks(remove = NULL, add = NULL)

24 defaultLabelledSummaries

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultLabelledSummaries

Default summary functions for labelled variables

Description

Default options for which summaries to apply on labelled type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultLabelledSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

variableType, countMissing, uniqueValues, centralValue

Examples

#remove "centralValue":
defaultLabelledSummaries(remove = "centralValue")

defaultLogicalChecks 25

defaultLogicalChecks Default checks for logical variables

Description

Default options for which checks to perform on logical type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultLogicalChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultLogicalSummaries

Default summary functions for logical variables

Description

Default options for which summaries to apply on logical type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultLogicalSummaries(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

26 defaultNumericSummaries

See Also

variableType, countMissing, uniqueValues, centralValue

Examples

#remove "uniqueValues":
defaultLogicalSummaries(remove = "uniqueValues")

defaultNumericChecks Default checks for numeric variables

Description

Default options for which checks to perform on numeric type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultNumericChecks(remove = NULL, add = NULL)

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A vector of function names.

defaultNumericSummaries

Default summary functions for numeric variables

Description

Default options for which summaries to apply on numeric type variables in check and makeDataReport,
possibly user-modified by adding extra function names using add or removing default function
names with remove.

Usage

defaultNumericSummaries(remove = NULL, add = NULL)

description 27

Arguments

remove Character vector of function names. Checks to remove from the returned vector

add Character vector of function names. Checks to add to the returned vector

Value

A list of function names (as character strings).

See Also

variableType, countMissing, uniqueValues, centralValue, quartiles, minMax

Examples

#remove "uniqueValues":
defaultNumericSummaries(remove = "uniqueValues")

description Extract the contents of the attribute description

Description

If the object, x, is itself of class checkFunction, summaryFunction or visualFunction, the con-
tents of x’s attribute description is returned. Otherwise, NULL is returned.

Usage

description(x)

description(x) <- value

Arguments

x The object for which the description attribute should be extracted.

value New value

Value

A description of what x does, given as a character string.

28 exampleData

Examples

#Extract the description of the checkFunction identifyMissing
description(identifyMissing)

#Extract the description of the summaryFunction minMax
description(minMax)

#Extract the description of the visualFunction basicVisual
description(basicVisual)

exampleData Example data with zero-inflated variables

Description

An artificial dataset, intended for presenting the extended features of dataReporter, which is a
toolset for identifying potential errors in a dataset.

Usage

exampleData

Format

A data.frame with 300 observations on the following 6 variables.

addresses a factor with fictitious US addresses

binomial a numeric vector with a binomial distributed variable

poisson a numeric vector with a Poisson distributed variable

gauss a numeric vector with a Gaussian distributed variable

zigauss a numeric vector with a zero-inflated Gaussian distributed variable

bpinteraction a factor with interactions between binomial and poisson values

Source

Artificial data

Examples

isID <- function(v, nMax = NULL, ...) {
out <- list(problem = FALSE, message = "")
if (class(v) %in% c("character", "factor", "labelled", "numeric", "integer")) {
v <- as.character(v)
lengths <- nchar(v)
if (all(lengths > 10) & length(unique(lengths)) == 1) {

out$problem <- TRUE

exampleData 29

out$message <- "Warning: This variable seems to contain ID codes!"
}

}
out

}

countZeros <- function(v, ...) {
res <- length(which(v == 0))
summaryResult(list(feature = "No. zeros", result = res, value = res))

}
countZeros <- summaryFunction(countZeros, description = "Count number of zeros",

classes = allClasses())
summarize(toyData, numericSummaries = c(defaultNumericSummaries()))

mosaicVisual <- function(v, vnam, doEval) {
thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
if (doEval) {
return(eval(thisCall))

} else return(deparse(thisCall))
}
mosaicVisual <- visualFunction(mosaicVisual,

description = "Mosaic plots using graphics",
classes = allClasses())

identifyColons <- function(v, nMax = Inf, ...) {
v <- unique(na.omit(v))
problemMessage <- "Note: The following values include colons:"
problem <- FALSE
problemValues <- NULL

problemValues <- v[sapply(gregexpr("[[:xdigit:]]:[[:xdigit:]]", v),
function(x) all(x != -1))]

if (length(problemValues) > 0) {
problem <- TRUE

}

problemStatus <- list(problem = problem,
problemValues = problemValues)

outMessage <- messageGenerator(problemStatus, problemMessage, nMax)

checkResult(list(problem = problem,
message = outMessage,
problemValues = problemValues))

}

identifyColons <- checkFunction(identifyColons,
description = "Identify non-suffixed nor -prefixed colons",
classes = c("character", "factor", "labelled"))

30 identifyCaseIssues

makeDataReport(exampleData, replace = TRUE,
preChecks = c("isKey", "isEmpty", "isID"),
allVisuals = "mosaicVisual",
characterSummaries = c(defaultCharacterSummaries(), "countZeros"),
factorSummaries = c(defaultFactorSummaries(), "countZeros"),
labelledSummaries = c(defaultLabelledSummaries(), "countZeros"),
numericSummaries = c(defaultNumericSummaries(), "countZeros"),
integerSummaries = c(defaultIntegerSummaries(), "countZeros"),
characterChecks = c(defaultCharacterChecks(), "identifyColons"),
factorChecks = c(defaultFactorChecks(), "identifyColons"),
labelledCheck = c(defaultLabelledChecks(), "identifyColons"))

identifyCaseIssues A checkFunction for identifying case issues

Description

A checkFunction to be called from check that identifies values in a vector that appear multiple
times with different case settings.

Usage

identifyCaseIssues(v, nMax = 10)

Arguments

v A character, factor, haven_labelled or labelled variable to check.

nMax The maximum number of problematic values to report. Default is 10. Set to Inf
if all problematic values are to be included in the outputted message, or to 0 for
no output.

Value

A checkResult with three entires: $problem (a logical indicating whether case issues where
found), $message (a message describing which values in v resulted in case issues) and $problemValues
(the problematic values in their original format). Note that Only unique problematic values are listed
and they are presented in alphabetical order.

See Also

check, allCheckFunctions, checkFunction, checkResult

identifyLoners 31

Examples

identifyCaseIssues(c("val", "b", "1", "1", "vAl", "VAL", "oh", "OH"))

identifyLoners A checkFunction for identifying sparsely represented values (loners)

Description

A checkFunction to be called from check that identifies values that only occur less than 6 times
in factor, (haven_)labelled, or character variables (that is, loners).

Usage

identifyLoners(v, nMax = 10)

Arguments

v A character, (haven_)labelled, or factor variable to check.

nMax The maximum number of problematic values to report. Default is 10. Set to Inf
if all problematic values are to be included in the outputted message, or to 0 for
no output.

Details

For character, (haven_)labelled, and factor variables, identify values that only have a very low
number of observations, as these categories might be problematic when conducting an analysis.
Unused factor levels are not considered "loners". "Loners" are defined as values with 5 or less
observations, reflecting the commonly use rule of thumb for performing chi squared tests.

Value

A checkResult with three entires: $problem (a logical indicating whether case issues where
found), $message (a message describing which values in v were loners) and $problemValues (the
problematic values in their original format). Note that Only unique problematic values are listed
and they are presented in alphabetical order.

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

identifyLoners(c(rep(c("a", "b", "c"), 10), "d", "d"))

32 identifyMissing

identifyMissing A checkFunction for identifying miscoded missing values.

Description

A checkFunction to be called from check that identifies values that appear to be miscoded missing
values.

Usage

identifyMissing(v, nMax = 10, ...)

Arguments

v A variable to check.

nMax The maximum number of problematic values to report. Default is 10. Set to Inf
if all problematic values are to be included in the outputted message, or to 0 for
no output.

... Not in use.

Details

identifyMissing tries to identify common choices of missing values outside of the R standard
(NA). These include special words (NaN and Inf (no matter the cases)), one or more -9/9’s (e.g. 999,
"99", -9, "-99"), one ore more -8/8’s (e.g. -8, 888, -8888), Stata style missing values (commencing
with ".") and other character strings ("", " ", "-", "NA" miscoded as character). If the variable is
numeric/integer or a character/factor variable consisting only of numbers and with more than 11
different values, the numeric miscoded missing values (999, 888, -99, -8 etc.) are only recognized
as miscoded missing if they are maximum or minimum, respectively, and the distance between the
second largest/smallest value and this maximum/minimum value is greater than one.

Value

A checkResult with three entires: $problem (a logical indicating whether midcoded missing val-
ues where found), $message (a message describing which values in v were suspected to be mis-
coded missing values), and $problemValues (the problematic values in their original format). Note
that Only unique problematic values are listed and that they are presented in alphabetical order.

See Also

check, allCheckFunctions, checkFunction, checkResult

identifyNums 33

Examples

#Identify miscoded numeric missing values
v1 <- c(1:15, 99)
v2 <- c(v1, 98)
v3 <- c(-999, v2, 9999)
identifyMissing(v1)
identifyMissing(v2)
identifyMissing(v3)
identifyMissing(factor(v3))

identifyNums A checkFunction

Description

A checkFunction to be called from check for identifying numeric variables that have been mis-
classified as categorical.

Usage

identifyNums(v, nVals = 12, ...)

Arguments

v A character, factor, or (haven_)labelled variable to check.

nVals An integer determining how many unique values a variable must have before it
can potentially be determined to be a misclassified numeric variable. The default
is 12.

... Not in use.

Details

A categorical variable is suspected to be a misclassified numeric variable if it has the following two
properties: First, it should consist exclusively of numbers (possibly including signs and decimals
points). Secondly, it must have at least nVals unique values. The default values of nVals is 12,
which means that e.g. variables including answers on a scale from 0-10 will not be recognized as
misclassified numerics.

Value

A checkResult with three entires: $problem (a logical indicating the variable is suspected to be a
misclassified numeric variable), $message (if a problem was found, the following message: "Note:
The variable consists exclusively of numbers and takes a lot of different values. Is it perhaps a
misclassified numeric variable?", otherwise "") and $problemValues (always NULL).

34 identifyOutliers

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

#Positive and negative numbers, saved as characters
identifyNums(c(as.character(-9:9)))

#An ordinary character variable
identifyNums(c("a", "b", "c", "d", "e.f", "-a", 1:100))

identifyOutliers A checkFunction for identifying outliers

Description

A checkFunction to be called from check that identifies outlier values in a Date/numeric/integer
variable.

Usage

identifyOutliers(v, nMax = 10, maxDecimals = 2)

Arguments

v A Date, numeric or integer variable to check.

nMax The maximum number of problematic values to report. Default is 10. Set to Inf
if all problematic values are to be included in the outputted message, or to 0 for
no output.

maxDecimals A positive integer or Inf. Number of decimals used when printing numerical
values in the data summary and in problematic values from the data checks. If
Inf, no rounding is performed.

Details

Outliers are identified based on an outlier rule that is appropriate for asymmetric data. Outliers are
observations outside the range

Q1− 1.5 ∗ exp(a ∗MC) ∗ IQR;Q3 + 1.5 ∗ exp(b ∗MC) ∗ IQR

where Q1, Q3, and IQR are the first quartile, third quartile, and inter-quartile range, MC is the
’medcouple’, a robust concept and estimator of skewness, and a and b are appropriate constants
(-4 and 3). The medcouple is defined as a scaled median difference of the left and right half of
distribution, and hence not based on the third moment as the classical skewness.

identifyOutliersTBStyle 35

When the data are symmetric, the measure reduces to the standard outlier rule also used in Tukey
Boxplots (consistent with the boxplot function), i.e. as values that are smaller than the 1st quartile
minus the inter quartile range (IQR) or greater than the third quartile plus the IQR.

For Date variables, the calculations are done on their raw numeric format (as obtained by using
unclass), after which they are translated back to Dates. Note that no rounding is performed for
Dates, no matter the value of maxDecimals.

Value

A checkResult with three entires: $problem (a logical indicating whether outliers were found),
$message (a message describing which values are outliers) and $problemValues (the outlier val-
ues).

See Also

check, allCheckFunctions, checkFunction, checkResult, mc

Examples

identifyOutliers(c(1:10, 200, 200, 700))

identifyOutliersTBStyle

A checkFunction for identifying outliers Turkey Boxstole style

Description

A checkFunction to be called from check that identifies outlier values in a numeric/integer/Date
variable by use of the Turkey Boxplot method (consistent witht the boxplot function).

Usage

identifyOutliersTBStyle(v, nMax = 10, maxDecimals = 2)

Arguments

v A numeric, integer or Date variable to check.

nMax The maximum number of problematic values to report. Default is 10. Set to Inf
if all problematic values are to be included in the outputted message, or to 0 for
no output.

maxDecimals A positive integer or Inf. Number of decimals used when printing numerical
values in the data summary and in problematic values from the data checks. If
Inf, no rounding is performed.

36 identifyWhitespace

Details

Outliers are defined in the style of Turkey Boxplots (consistent with the boxplot function), i.e. as
values that are smaller than the 1st quartile minus the inter quartile range (IQR) or greater than the
third quartile plus the IQR.

For Date variables, the calculations are done on their raw numeric format (as obtained by using
unclass), after which they are translated back to Dates. Note that no rounding is performed for
Dates, no matter the value of maxDecimals.

Value

A checkResult with three entires: $problem (a logical indicating whether outliers were found),
$message (a message describing which values are outliers) and $problemValues (the outlier val-
ues).

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

identifyOutliersTBStyle(c(1:10, 200, 200, 700))

identifyWhitespace A checkFunction for identifying whitespace

Description

A checkFunction to be called from check that identifies prefixed and suffixed whitespace(s) in
character, (haven_)labelled or factor variables.

Usage

identifyWhitespace(v, nMax = 10)

Arguments

v A character, (haven_)labelled or factor variable to check.

nMax The maximum number of problematic values to report. Default is 10. Set to Inf
if all problematic values are to be included in the outputted message, or to 0 for
no output.

Value

A checkResult with three entires: $problem (a logical indicating whether any whitespaces were
fount), $message (a message describing which values were prefixed or suffixed with whitespace)
and $problemValues (the problematic values). Note that only unique values are printed in the
message, and that they are sorted alphabetically.

isCPR 37

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

identifyWhitespace(c("a", " b", "c", "d ", "e "))

isCPR Check if a variable consists of Danish CPR numbers

Description

A checkFunction that checks if v consists exclusively of valid Danish civil registration (CPR) num-
bers, ignoring missing values. This function is intended for use as a precheck in makeDataReport,
ensuring that CPR numbers are not included in a dataReporter output document.

Usage

isCPR(v, ...)

Arguments

v A variable (vector) to check. This variable is allowed to have any class.

... Not in use.

Value

A checkResult with three entires: $problem (a logical indicating whether the variable consists of
CPR numbers), $message (if a problem was found, the following message: "Warning: The variable
seems to consist of Danish civil registration (CPR) numbers.", otherwise "") and $problemValues
(always NULL).

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

CPRs <- c("010188-3639", "020187-1476", "040506-8664", "010290-3684", "010291-1180",
"010293-1599", "010294-1268", "010295-1360", "010296-3970", "010297-2007",
"010270-2905", "010271-0134", "010272-1403", "010273-3088", "010274-1633")

nonCPRs <- c(1:10)
mixedCPRs <- c(CPRs, nonCPRs)

#identify problem
isCPR(CPRs)

38 isKey

#no problem as there are no CPRs
isCPR(nonCPRs)

#no problem because not ALL values are CPRs
isCPR(mixedCPRs)

isKey Check if a variable qualifies as a key

Description

A checkFunction that checks if v is a key, that is, if every observation has a unique value in v and
v is not a numeric/integer nor a Date variable. This function is intended for use as a precheck in
makeDataReport.

Usage

isKey(v)

Arguments

v A variable (vector) to check. All variable types are allowed.

Details

Note that numeric or integer variables are not considered candidates for keys, as truly continuous
measurements will most likely result in unique values for each observation.

Value

A checkResult with three entires: $problem (a logical indicating whether v is a key), $message
(if a problem was found, the following message: "The variable is a key (distinct values for each
observation).", otherwise "") and $problemValues (always NULL).

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

keyVar <- c("a", "b", "c", "d", "e", "f")
notKeyVar <- c("a", "a", "b", "c", "d", "e", "f")

isKey(keyVar)
isKey(notKeyVar)

isSingular 39

isSingular Check if a variable only contains a single value

Description

A checkFunction that checks if v only contains a single unique value, aside from missing values.
This function is intended for use as a precheck in makeDataReport.

Usage

isSingular(v)

isEmpty(v)

Arguments

v A variable (vector) to check. All variable types are allowed.

Value

A checkResult with three entires: $problem (a logical indicating whether v contains only one
value), $message (if a problem was found, a message describing which single value the variable
takes and how many missing observations it contains, otherwise ""), and $problemValues (always
NULL).

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

singularVar <- c(rep("a", 10), NA, NA)
notSingularVar <- c("a", "a", "b", "c", "d", "e", "f", NA, NA)

isSingular(singularVar)
isSingular(notSingularVar)

40 isSupported

isSupported Check if a variable has a class supported by dataReporter

Description

A checkFunction that checks if v has one of the classes supported by dataReporter, namely
character, factor, numeric, integer, labelled, haven_labelled, logical and Date (inlcud-
ing other classes that inherits from any of these classes). A user supported list can be provided in
the treatXasY argument, which will let the user decide how unsupported classes should be treated.
This function is intended for use as a precheck in makeDataReport.

Usage

isSupported(v)

Arguments

v A variable (vector) to check. All variable types are allowed.

Value

A checkResult with three entires: $problem (a logical indicating whether v contains only one
value), $message (if a problem was found, a message describing which single value the variable
takes and how many missing observations it contains, otherwise ""), and $problemValues (always
NULL).

See Also

check, allCheckFunctions, checkFunction, checkResult

Examples

integerVar <- 1:10 #supported
rawVar <- as.raw(1:10) #not supported

isSupported(integerVar)
isSupported(rawVar)

makeCodebook 41

makeCodebook Produce a data codebook

Description

Make a data codebook that summarizes the contents of a dataset. The result is saved to an R
markdown file which can be rendered into an easy-to-read codebook in pdf, html or word formats.

Usage

makeCodebook(data, vol = "", reportTitle = NULL, file = NULL, ...)

Arguments

data The dataset to be checked. This dataset should be of class data.frame, tibble
or matrix. If it is of class matrix, it will be converted to a data.frame.

vol Extra text string or numeric that is appended on the end of the output file name(s).
For example, if the dataset is called "myData", no file argument is supplied and
vol=2, the output file will be called "codebook_myData2.Rmd"

reportTitle A text string. If supplied, this will be the printed title of the report. If left
unspecified, the title with the name of the supplied dataset.

file The filename of the outputted rmarkdown (.Rmd) file. If set to NULL (the de-
fault), the filename will be the name of data prefixed with "codebook_", if this
qualifies as a valid file name (e.g. no special characters allowed). Otherwise,
makeCodebook() tries to create a valid filename by substituting illegal charac-
ters. Note that a valid file is of type .Rmd, hence all filenames should have a
".Rmd"-suffix.

... Additional parameters passed to makeDataReport.

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

makeDataReport Produce a data report

Description

Make a data overview report that summarizes the contents of a dataset and flags potential problems.
The potential problems are identified by running a set of class-specific validation checks, so that
different checks are performed on different variables types. The checking steps can be customized
according to user input and/or data type of the inputted variable. The checks are saved to an R
markdown file which can rendered into an easy-to-read data report in pdf, html or word formats.
This report also includes summaries and visualizations of each variable in the dataset.

https://doi.org/10.18637/jss.v090.i06

42 makeDataReport

Usage

makeDataReport(
data,
output = NULL,
render = TRUE,
useVar = NULL,
ordering = c("asIs", "alphabetical"),
onlyProblematic = FALSE,
labelled_as = c("factor"),
mode = c("summarize", "visualize", "check"),
smartNum = TRUE,
preChecks = c("isKey", "isSingular", "isSupported"),
file = NULL,
replace = FALSE,
vol = "",
standAlone = TRUE,
twoCol = TRUE,
quiet = TRUE,
openResult = TRUE,
summaries = setSummaries(),
visuals = setVisuals(),
checks = setChecks(),
listChecks = TRUE,
maxProbVals = 10,
maxDecimals = 2,
addSummaryTable = TRUE,
codebook = FALSE,
reportTitle = NULL,
treatXasY = NULL,
includeVariableList = TRUE,
...

)

Arguments

data The dataset to be checked. This dataset should be of class data.frame, tibble
or matrix. If it is of classs matrix, it will be converted to a data.frame.

output Output format. Options are "pdf", "word" (.docx) and "html". If NULL (the de-
fault), the output format depends two sequential checks. First, whether a LaTeX
installation is available, in which case pdf output is chosen. Secondly, if no La-
TeX installation is found, then if the operating system is Windows, word output
is used. Lastly, if neither of these checks are positive, html output is used.

render Should the output file be rendered (defaults to TRUE), i.e. should a pdf/word/html
document be generated and saved to the disc?

useVar Variables to describe in the report. If NULL (the default), all variables in data are
included. If a vector of variable names is supplied, only the variables in data
that are also in useVar are included in the data report.

makeDataReport 43

ordering Choose the ordering of the variables in the variable presentation. The options
are "asIs" (ordering as in the dataset) and "alphabetical" (alphabetical order).

onlyProblematic

A logical. If TRUE, only the variables flagged as problematic in the check step
will be included in the variable list.

labelled_as A string explaining the way to handle labelled and haven_labelled vectors. Cur-
rently "factor" (the default) is the only possibility. This means that labelled or
haven_labelled variables that appear factor-like (by having a non-NULL labels-
attribute) will be treated as factors, while other labelled or haven_labelled vari-
ables will be treated as whatever base variable class they inherit from.

mode Vector of tasks to perform among the three categories "summarize", "visualize"
and "check". The default, c("summarize", "visualize", "check"), implies
that all three steps are performed. The steps selected in mode will be performed
for each variable in data and their results are presented in the second part of
the outputtet data report. The "summarize" step is responsible for creating the
summary table, the "visualize" step is responsible for creating the plot and the
"check" step is responsible for performing checks on the variable and printing
the results if any problems are found.

smartNum If TRUE (the default), numeric and integer variables with less than 5 unique val-
ues are treated as factor variables in the checking, visualization and summary
steps, and a message notifying the reader of this is printed in the data summary.

preChecks Vector of function names for check functions used in the pre-check stage. The
pre-check stage consists of variable checks that should be performed before the
summary/visualization/checking step. If any of these checks find problems, the
variable will not be summarized nor visualized nor checked.

file The filename of the outputted rmarkdown (.Rmd) file. If set to NULL (the de-
fault), the filename will be the name of data prefixed with "dataReporter_", if
this qualifies as a valid file name (e.g. no special characters allowed). Other-
wise, makeDataReport() tries to create a valid filename by substituing illegal
characters. Note that a valid file is of type .Rmd, hence all filenames should
have a ".Rmd"-suffix.

replace If FALSE (the default), an error is thrown if one of the files that we are about
to be created (.Rmd overview file and possible also a .html, .pdf or .docx file)
already exist. If TRUE, no checks are performed and files on disc thus might be
overwritten.

vol Extra text string or numeric that is appended on the end of the output file name(s).
For example, if the dataset is called "myData", no file argument is supplied and
vol=2, the output file will be called "dataReporter_myData2.Rmd"

standAlone A logical. If TRUE, the document begins with a markdown YAML preamble such
that it can be rendered as a stand alone rmarkdown file, e.g. by calling render.
If FALSE, this preamble is removed. Moreover, no matter the input to the render
argument, the document will now not be rendered, as it has no preamble.

twoCol A logical. Should the results from the summarize and visualize steps be pre-
sented in two columns? Defaults to TRUE.

quiet A logical. If TRUE (the default), only a few messages are printed to the screen as
makeDataReport runs. If FALSE, no messages are suppressed. The third option,

44 makeDataReport

silent, renders the function completely silent, such that only fatal errors are
printed.

openResult A logical. If TRUE (the default), the last file produced by makeDataReport is
automatically opened by the end of the function run. This means that if render
= TRUE, the rendered pdf, word or html file is opened, while if render = FALSE,
the .Rmd file is opened.

summaries A list of summaries to use on each supported variable type. We recommend
using setSummaries for creating this list and refer to the documentation of this
function for more details.

visuals A list of visual functions to use on each supported variable type. We recommend
using setVisuals for creating this list and refer to the documentation of this
function for more details.

checks A list of checks to use on each supported variable type. We recommend using
setChecks for creating this list and refer to the documentation of this function
for more details.

listChecks A logical. Controls whether what checks that were used for each possible vari-
able type are summarized in the output. Defaults to TRUE.

maxProbVals A positive integer or Inf. Maximum number of unique values printed from
check-functions. In the case of Inf, all problematic values are printed. Defaults
to 10.

maxDecimals A positive integer or Inf. Number of decimals used when printing numerical
values in the data summary and in problematic values from the data checks. If
Inf, no rounding is performed.

addSummaryTable

A logical. If TRUE (the default), a summary table of the variable checks is
added between the Data Cleaning Summary and the Variable List. Only one
of addSummaryTable and addCodebookTable can be TRUE.

codebook A logical. Defaults to FALSE. If TRUE then the document is tweaked to better
represent a codebook.

reportTitle A text string. If supplied, this will be the printed title of the report. If left
unspecified, the title with the name of the supplied dataset.

treatXasY A list that indicates how non-standard variable classes should be treated. This
parameter allows you to include variables that are not of class factor, character,
labelled, haven_labelled, numeric, integer, logical nor Date (or a class
that inherits from any of these classes). The names of the list are the new
classes and the entries are the names of the class, they should be treated as.
If makeDataReport() should e.g. treat variables of class raw as characters and
variables of class complex as numeric, you should put treatXasY = list(raw
= "character", complex = "numeric").

includeVariableList

A logical indicating whether the results of the summarize/visualize/check-steps
should be added to the report. Defaults to TRUE. Note that setting it to FALSE
does currently not speed up computations, it just means that the information is
not printed in the report.

... Other arguments that are passed on the to precheck, checking, summary and
visualization functions.

makeDataReport 45

Details

For each variable, a set of pre-check functions (controlled by the preChecks argument) are first run
and then then a battery of functions are applied depending on the variable class. For each variable
type the summarize/visualize/check functions are applied and and the results are written to an R
markdown file.

Value

The function does not return anything. Its side effect (the production of a data report) is the reason
for running the function.

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

Examples

data(testData)
data(toyData)

check(toyData)

DF <- data.frame(x = 1:15)
makeDataReport(DF)

data(testData)
makeDataReport(testData)

Overwrite any existing files generated by makeDataReport

makeDataReport(testData, replace=TRUE)

Change output format to Word/docx:

makeDataReport(testData, replace=TRUE, output = "word")

Only include problematic variables in the output document

makeDataReport(testData, replace=TRUE, onlyProblematic=TRUE)

Add user defined check-function to the checks performed on character variables:
Here we add functionality to search for the string wally (ignoring case)

https://doi.org/10.18637/jss.v090.i06

46 messageGenerator

wheresWally <- function(v, ...) {
res <- grepl("wally", v, ignore.case=TRUE)
problem <- any(res)
message <- "Wally was found in these data"
checkResult(list(problem = problem,

message = message,
problemValues = v[res]))

}

wheresWally <- checkFunction(wheresWally,
description = "Search for the string 'wally' ignoring case",
classes = c("character")
)

Add the newly defined function to the list of checks used for characters.
makeDataReport(testData,

checks = setChecks(character = defaultCharacterChecks(add = "wheresWally")),
replace=TRUE)

#Handle non-supported variable classes using treatXasY: treat raw as character and
#treat complex as numeric. We also add a list variable, but as lists are not
#handled through treatXasY, this variable will be caught in the preChecks and skipped:

toyData$rawVar <- as.raw(c(1:14, 1))
toyData$compVar <- c(1:14, 1) + 2i
toyData$listVar <- as.list(c(1:14, 1))
makeDataReport(toyData, replace = TRUE,

treatXasY = list(raw = "character", complex = "numeric"))

messageGenerator Produce a message for the output of a checkFunction

Description

Helper function for producing output messages for checkFunction type functions.

Usage

messageGenerator(
problemStatus,
message = "Note that a check function found the following problematic values:",
nMax = 10

)

messageGenerator 47

Arguments

problemStatus A list consisting of two entries:
$problem - logical indicating whether a problem was found by the checkFunction
responsible for the making the messageGenerator() call,
$problemValues - a vector of values from the variable that were deemed prob-
lematic (see details below).

message Optional, but recommended. A message describing what problem the problem
values are related to. If NULL a standard message is added using the name of the
function that called messageGenerator.

nMax Maximum number of problem values to be printed in the message. If the total
number of problem values exceeds nMax, the number of omitted problem values
are added to the message. Defaults to Inf, in which case all problem values are
printed.

Details

This function is a tool for building checkFunctions for the dataReporter makeDataReport func-
tion. checkFunctions will often identify a number of values in a variable that are somehow prob-
lematic. messageGenerator takes these values, pastes them together with a problem description
and makes sure that the formatting is appropriate for being rendered in a rmarkdown document.
We recommend writing short and precise problem descriptions (see examples), but if no message
is supplied, the following message is generated: "Note that a check function found the following
problematic values: [problem values]".

Value

A character string with a problem description.

See Also

check, checkFunction, makeDataReport

Examples

#Varibales with/without underscores
noUSVar <- c(1:10)
USVar <- c("_a", "n_b", "b_", "_", 1:10)

#Define a checkFunction using messageGenerator with a manual
#problem description:
identifyUnderscores <- function(v, nMax = Inf) {

v <- as.character(v)
underscorePlaces <- regexpr("_", v) > 0
problemValues <- unique(v[underscorePlaces])
problem <- any(underscorePlaces)
message <- messageGenerator(list(problemValues = problemValues, problem = problem),

"The following values contain underscores:",
nMax = nMax)

checkResult(list(problem = problem, message = message,

48 minMax

problemValues = problemValues))
}

identifyUnderscores(noUSVar) #no problem
identifyUnderscores(USVar) #problems

#Only print the first two problemvalues in the message:
identifyUnderscores(USVar, nMax = 2)

#Define same function, but without a manual problem description in
#the messageGenerator-call:
identifyUnderscores2 <- function(v, nMax = Inf) {
v <- as.character(v)
underscorePlaces <- regexpr("_", v) > 0
problemValues <- unique(v[underscorePlaces])
problem <- any(underscorePlaces)
message <- messageGenerator(list(problemValues = problemValues,

problem = problem), nMax = nMax)
checkResult(list(problem = problem, message = message,

problemValues = problemValues))
}

identifyUnderscores2(noUSVar) #no problem
identifyUnderscores2(USVar) #problems

minMax summaryFunction for minimum and maximum

Description

A summaryFunction, intended to be called from summarize, which returns the minimum and max-
imum values of a variable. NA, NaN and Inf values are removed prior to the computations.

Usage

minMax(v, maxDecimals = 2)

Arguments

v A variable (vector) of type numeric or integer.

maxDecimals A positive integer or Inf. Number of decimals used when printing numerical
values in the data summary and in problematic values from the data checks. If
Inf, no rounding is performed.

Value

An object of class summaryResult with the following entries: $feature ("Min. and max."),
$result (the minimum and maximum of v), and $value (minimum and maximum in their orignial
format).

presidentData 49

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

minMax(c(1:100))

presidentData Semi-artificial data about the US presidents

Description

A dataset with information about the first 45 US presidents as well as a 46th person, who is not a US
president. The dataset was constructed to show the capabilities of dataReporter and therefore, it
has been constructed to include errors and miscodings. Each observation in the dataset corresponds
to a person. The dataset uses the non-standard class Name which is simply an attribute that has been
added to two variables in order to show how dataReporter handles non-supported classes.

Usage

presidentData

Format

A data frame with 46 rows and 11 variables.

lastName A Name type variable containing the last name of the president.

firstName A Name type variable containing the first name of the president.

orderOfPresidency A factor variable indicating the order of the presidents (with George Wash-
ington as number 1 and Donald Trump as number 45).

birthday A Date variable with the birthday of the president

stateOfBirth A character variable with the state in which the president was born.

assassinationAttempt A numeric variable indicating whether there was an assassination attempt
(1) or not (0) on the president.

sex A factor variable with the sex of the president.

ethnicity A factor variable with the ethnicity of the president.

presidencyYears A numeric variable with the duration of the presidency, in years.

ageAtInauguration A character variable with the age at inauguration.

favoriteNumber A complex type variable with a fictional favorite number for each president.

Source

Artificial dataset constructed based on the US president dataset available from Data Explorer.

https://www.data-explorer.com/data/

50 quartiles

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

Examples

data(presidentData)

quartiles summaryFunction for quartiles

Description

A summaryFunction, intended to be called from summarize, which calculates the 1st and 3rd
quartiles of a variable. NA, NaN and Inf values are removed prior to the computations.

Usage

quartiles(v, maxDecimals = 2)

Arguments

v A variable (vector) of type numeric or integer.
maxDecimals A positive integer or Inf. Number of decimals used when printing numerical

values in the data summary and in problematic values from the data checks. If
Inf, no rounding is performed.

Details

The quartiles are computed using the quantile function from stats, using type 7 quantiles for
integer and numeric variables and type 1 quantiles for Date variables.

Value

An object of class summaryResult with the following entries: $feature ("1st and 3rd quartiles"),
$result (the 1st and 3rd quartiles of v) and $value (the quartiles in their original format).

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

quartiles(c(1:100))

quartiles(rnorm(1000), maxDecimals = 4)

https://doi.org/10.18637/jss.v090.i06

refCat 51

refCat summaryFunction that finds reference level for factor variables

Description

A summaryFunction, intended to be called from summarize, which returns the reference level of
a factor variable, i.e. the first category as returned by levels(v). This level will serve as the
reference category and get absorbed into the intercept for most standard model fitting procedures
and therefore, it may be convenient to know.

Usage

refCat(v, ...)

Arguments

v A variable (vector) of type factor.

... Not in use.

Value

An object of class summaryResult with the following entries: $feature ("Reference level"),
$result (the reference level of v), and $value (identical to result).

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

refCat(factor(letters))

render Simplified Rmarkdown rendering

Description

Render a Rmarkdown (.Rmd) file, file, to the output format specified in its preamble. If no output
format is specified, it will be rendered to html.

Usage

render(file, quiet)

52 setChecks

Arguments

file A character string path to the file that is to be rendered. This file must be of type
Rmarkdown (.Rmd)

quiet A logical. Should messages during rendering be surpressed?

Details

This function is merely a simplified version (in terms of possible arguments) of the rendering func-
tion from the rmarkdown package. Therefore, we refer to this functions for more details: render.
We have included this simplified version in dataReporter in order to help new R users with ren-
dering their output documents as generated by makeDataReport.

See Also

render.

setChecks Set check arguments for makeDataReport

Description

This function is a tool for easily specifying the checks argument of makeDataReport. Note that all
available check function options can be inspected by calling allCheckFunctions().

Usage

setChecks(
character = defaultCharacterChecks(),
factor = defaultFactorChecks(),
labelled = defaultLabelledChecks(),
haven_labelled = defaultHavenlabelledChecks(),
numeric = defaultNumericChecks(),
integer = defaultIntegerChecks(),
logical = defaultLogicalChecks(),
Date = defaultDateChecks(),
all = NULL

)

Arguments

character A character vector of function names to be used as checks for character vari-
ables. The default options are available by calling defaultCharacterChecks().

factor A character vector of function names to be used as checks for factor variables.
The default options are available by calling defaultFactorChecks().

labelled A character vector of function names to be used as checks for labelled variables.
The default options are available by calling defaultLabelledChecks().

setSummaries 53

haven_labelled A character vector of function names to be used as checks for haven_labelled
variables. The default options are available by calling defaultHavenlabelledChecks().

numeric A character vector of function names to be used as checks for numeric variables.
The default options are available by calling defaultNumericChecks().

integer A character vector of function names to be used as checks for integer variables.
The default options are available by calling defaultIntegerChecks().

logical A character vector of function names to be used as checks for logical variables.
The default options are available by calling defaultLogicalChecks().

Date A character vector of function names to be used as checks for Date variables.
The default options are available by calling defaultDateChecks().

all A character vector of function names to be used as checks for all variables. Note
that this overrules the choices made for specific variable types by using the other
arguments.

Value

A list with one entry for each data class supported by makeDataReport. Each entry then contains a
character vector of function names that are to be called as checks for that variable type.

See Also

makeDataReport, allCheckFunctions, defaultCharacterChecks, defaultFactorChecks, defaultLabelledChecks,
defaultHavenlabelledChecks, defaultNumericChecks, defaultIntegerChecks, defaultLogicalChecks,
defaultDateChecks

Examples

#Only identify missing values for characters, logicals and labelled variables:
setChecks(character = "identifyMissing", factor = "identifyMissing",

labelled = "identifyMissing")

#Used in a call to makeDataReport():

data(toyData)
makeDataReport(toyData, checks = setChecks(character = "identifyMissing",

factor = "identifyMissing", labelled = "identifyMissing"), replace = TRUE)

setSummaries Set summary arguments for makeDataReport

Description

This function is a tool for easily specifying the summaries argument of makeDataReport. Note
that all available summary function options can be inspected by calling allSummaryFunctions().

54 setSummaries

Usage

setSummaries(
character = defaultCharacterSummaries(),
factor = defaultFactorSummaries(),
labelled = defaultLabelledSummaries(),
haven_labelled = defaultHavenlabelledSummaries(),
numeric = defaultNumericSummaries(),
integer = defaultIntegerSummaries(),
logical = defaultLogicalSummaries(),
Date = defaultDateSummaries(),
all = NULL

)

Arguments

character A character vector of function names to be used as summaries for character vari-
ables. The default options are available by calling defaultCharacterSummaries().

factor A character vector of function names to be used as summaries for factor vari-
ables. The default options are available by calling defaultFactorSummaries().

labelled A character vector of function names to be used as summaries for labelled vari-
ables. The default options are available by calling defaultLabelledSummaries().

haven_labelled A character vector of function names to be used as summaries for haven_labelled
variables. The default options are available by calling defaultHavenlabelledSummaries().

numeric A character vector of function names to be used as summaries for numeric vari-
ables. The default options are available by calling defaultNumericSummaries().

integer A character vector of function names to be used as summaries for integer vari-
ables. The default options are available by calling defaultIntegerSummaries().

logical A character vector of function names to be used as summaries for logical vari-
ables. The default options are available by calling defaultLogicalSummaries().

Date A character vector of function names to be used as summaries for Date variables.
The default options are available by calling defaultDateSummaries().

all A character vector of function names to be used as summaries for all variables.
Note that this overrules the choices made for specific variable types by using the
other arguments.

Value

A list with one entry for each data class supported by makeDataReport. Each entry then contains a
character vector of function names that are to be called as summaries for that variable type.

See Also

makeDataReport, allSummaryFunctions, defaultCharacterSummaries, defaultFactorSummaries,
defaultLabelledSummaries, defaultHavenlabelledSummaries, defaultNumericSummaries,
defaultIntegerSummaries, defaultLogicalSummaries, defaultDateSummaries

setVisuals 55

Examples

#Don't include central value (median/mode) summary for numerical and integer
#variables:

setSummaries(numeric = defaultNumericSummaries(remove = "centralValue"),
integer = defaultIntegerSummaries(remove = "centralValue"))

#Used in a call to makeDataReport():

data(toyData)
makeDataReport(toyData,

setSummaries(numeric = defaultNumericSummaries(remove = "centralValue"),
integer = defaultIntegerSummaries(remove = "centralValue")), replace = TRUE)

setVisuals Set visual arguments for makeDataReport

Description

This function is a tool for easily specifying the visuals argument of makeDataReport. Note that
only a single visual function can be provided for each variable type. If more than one is supplied,
only the first one is used. The default is to use a single visual function for all variable types (as
specified in the argument all), but class-specific choices of visual functions can also be used. Note
that class-specific arguments overwrites the contents of all. Note that all available visual function
options can be inspected by calling allVisualFunctions().

Usage

setVisuals(
character = NULL,
factor = NULL,
labelled = NULL,
haven_labelled = NULL,
numeric = NULL,
integer = NULL,
logical = NULL,
Date = NULL,
all = "standardVisual"

)

Arguments

character A function name (character string) to be used as the visual function for character
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

56 setVisuals

factor A function name (character string) to be used as the visual function for factor
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

labelled A function name (character string) to be used as the visual function for labelled
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

haven_labelled A function name (character string) to be used as the visual function for haven_labelled
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

numeric A function name (character string) to be used as the visual function for numeric
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

integer A function name (character string) to be used as the visual function for integer
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

logical A function name (character string) to be used as the visual function for logical
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

Date A function name (character string) to be used as the visual function for Date
variables. If NULL (the default) the argument is ignored and the contents of the
all argument is used instead.

all A function name (character string) to be used as the visual function for all vari-
ables.

Value

A list with one entry for each data class supported by makeDataReport. Each entry then contains
a character string with a function name that is to be called as the visual function for that variable
type.

See Also

makeDataReport, allVisualFunctions

Examples

#Set visual type to basicVisual for all variable types:
setVisuals(all = "basicVisual")

#Used in a call to makeDataReport():

data(toyData)
makeDataReport(toyData, visuals = setVisuals(all = "basicVisual"), replace = TRUE)

smartNum 57

smartNum Smart class to handle numerics as factor

Description

S3 class meant for representing numeric variables that act like factor variables by taking only a few
different values. This class is used in makeDataReport() in order to get appropriate summaries,
visualizations and checks for such variables. In other words, such variables will be treated like
factor variables instead of numerics.

Usage

smartNum(v)

Arguments

v A numeric vector

Value

A smartNum object that is handled in makeDataReport in the same way as a factor.

standardVisual Produce distribution plots using ggplot from ggplot2.

Description

Plot the distribution of a variable, depending on its data class, by use of ggplot2. Note that
standardVisual is a visualFunction, compatible with the visualize and makeDataReport
functions.

Usage

standardVisual(v, vnam, doEval = TRUE)

Arguments

v The variable (vector) to be plotted.

vnam The name of the variable which will appear as the title of the plot.

doEval If TRUE, the plot itself is returned. Otherwise, the function returns a character
string containing standalone R code for producing the plot.

58 summarize

Details

For character, factor, logical and (haven_)labelled variables, a barplot is produced. For numeric,
integer or Date variables, standardVisual produces a histogram instead. Note that for integer
and numeric variables, all non-finite (i.e. NA, NaN, Inf) values are removed prior to plotting. For
character, Date, factor, (haven_)labelled and logical variables, only NA values are removed.

See Also

visualize, basicVisual

Examples

#Save a variable
myVar <- c(1:10)

#Plot a variable
standardVisual(myVar, "MyVar")

#Produce code for plotting a variable
standardVisual(myVar, "MyVar", doEval = FALSE)

summarize Summarize a variable/dataset

Description

Generic shell function that produces a summary of a variable (or for each variable in an entire
dataset), given a number of summary functions and depending on its data class.

Usage

summarize(v, reportstyleOutput = FALSE, summaries = setSummaries(), ...)

Arguments

v The variable (vector) or dataset (data.frame) to be summarized.
reportstyleOutput

Logical indicating whether the output should be formatted for inclusion in the
report (escaped matrix) or not. Defaults to not.

summaries A list of summaries to use on each supported variable type. We recommend
using setSummaries for creating this list and refer to the documentation of this
function for more details.

... Additional argument passed to data class specific methods.

summarize 59

Details

Summary functions are supplied using their names (in character strings) in the class-specific argu-
ment, e.g. characterSummaries = c("countMissing", "uniqueValues") for character variables
and similarly for the remaining 7 data classes (factor, Date, labelled, haven_labelled, numeric, inte-
ger, logical). Note that an overview of all available summaryFunctions can be obtained by calling
allSummaryFunctions.

The default choices of summaryFunctions are available in data class specific functions, e.g. defaultCharacterSummaries()
and defaultNumericSummaries(). A complete overview of all default options can be obtained by
calling setSummaries()

A user defined summary function can be supplied using its function name. Note however that it
should take a vector as argument and return a list on the form list(feature="Feature name",
result="The result"). More details on how to construct valid summary functions are found in
summaryFunction.

Value

The return value depends on the value of reportstyleOutput.

If reportstyleOutput = FALSE (the default): If v is a varibale, a list of summaryResult objects,
one summaryResult for each summary function called on v. If v is a dataset, then summarize()
returns a list of lists of summaryResult objects instead; one list for each variable in v.

If reportstyleOutput = TRUE: If v is a single variable: A matrix with two columns, feature and
result and one row for each summary function that was called. Character strings in this matrix are
escaped such that they are ready for Rmarkdown rendering.

If v is a full dataset: A list of matrices as described above, one for each variable in the dataset.

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

See Also

setSummaries, summaryFunction, allSummaryFunctions, summaryResult, defaultCharacterSummaries,
defaultFactorSummaries, defaultLabelledSummaries, defaultHavenlabelledSummaries, defaultNumericSummaries,
defaultIntegerSummaries, defaultLogicalSummaries

Examples

#Default summary for a character vector:
charV <- c("a", "b", "c", "a", "a", NA, "b", "0")
summarize(charV)

#Inspect default character summary functions:
defaultCharacterSummaries()

#Define a new summary function and add it to the summary for character vectors:
countZeros <- function(v, ...) {

https://doi.org/10.18637/jss.v090.i06

60 summaryFunction

res <- length(which(v == 0))
summaryResult(list(feature="No. zeros", result = res, value = res))

}
summarize(charV,
summaries = setSummaries(character = defaultCharacterSummaries(add = "countZeros")))

#Does nothing, as intV is not affected by characterSummaries
intV <- c(0:10)
summarize(intV,
summaries = setSummaries(character = defaultCharacterSummaries(add = "countZeros")))

#But supplying the argument for integer variables changes the summary:
summarize(intV, summaries = setSummaries(integer = "countZeros"))

#Summarize a full dataset:
data(cars)
summarize(cars)

#Summarize a variable and obtain report-style output (formatted for markdown)
summarize(charV, reportstyleOutput = TRUE)

summaryFunction Create an object of class summaryFunction

Description

Convert a function, f, into an S3 summaryFunction object. This adds f to the overview list returned
by an allSummaryFunctions() call.

Usage

summaryFunction(f, description, classes = NULL)

Arguments

f A function. See details and examples below for the exact requirements of this
function.

description A character string describing the summary returned by f. If NULL (the default),
the name of f will be used instead.

classes The classes for which f is intended to be called. If NULL (the default), one of
two things happens. If f is not a S3 generic function, the classes attribute of
f will be an empty character string. If f is a S3 generic function, an automatic
look-up for methods will be conducted, and the classes attribute will then be
filled out automatically. Note that the function allClasses (listing all classes
used in dataReporter) might be useful.

summaryFunction 61

Details

summaryFunction represents the functions used in summarize and makeDataReport for summa-
rizing the features of variables in a dataset.

An example of defining a new summaryFunction is given below. Note that the minimal require-
ments for such a function (in order for it to be compatible with summarize() and makeDataReport())
is the following input/output-structure: It must input at least two arguments, namely v (a vector vari-
able) and Additional implemented arguments from summarize() and makeDataReport() in-
clude maxDecimals, see e.g. the pre-defined summaryFunction minMax for more details about how
this arguments should be used. The output must be a list with at least the two entries $feature (a
short character string describing what was summarized) and $result (a value or a character string
with the result of the summarization). However, if the result of a summaryFunction is furthermore
converted to a summaryResult object, a print() method also becomes available for consistent
formatting of summaryFunction results.

Note that all available summaryFunctions are listed by the call allSummaryFunctions() and we
recommed looking into these function, if more knowledge about summaryFunctions is required.

Value

A function of class summaryFunction which has to attributes, namely classes and description.

See Also

allSummaryFunctions, summarize, makeDataReport, checkResult

Examples

#Define a valid summaryFunction that can be called from summarize()
#and makeDataReport(). This function counts how many zero entries a given
#variable has:
countZeros <- function(v, ...) {
res <- length(which(v == 0))
summaryResult(list(feature = "No. zeros", result = res, value = res))

}

#Convert it to a summaryFunction object. We don't count zeros for
#logical variables, as they have a different meaning here (FALSE):
countZeros <- summaryFunction(countZeros, description = "Count number of zeros",

classes = setdiff(allClasses(), "logical"))

#Call it directly :
countZeros(c(0, 0, 0, 1:100))

#Call it via summarize():
data(cars)
summarize(cars, numericSummaries = c(defaultNumericSummaries(),

"countZeros"))

#Note that countZeros now appears in a allSummaryFunctions() call:
allSummaryFunctions()

62 tableVisual

summaryResult Create object of class summaryResult

Description

Convert a list resulting from the summaries performed in a summaryFunction into a summaryResult
object, thereby supplying it with a print() method.

Usage

summaryResult(ls)

Arguments

ls A list with entries $feature (a character string describing what summary was
obtained), $result (the result of the summary, either a value from the variable,
a numeric or a character string) and $value (the result in its most raw format,
often identical to the $result input).

Value

A S3 object of class summaryResult, identical to the inputted list, ls, except for its class attribute.

See Also

summaryFunction

tableVisual Produce tables for the makeDataReport visualizations.

Description

Produce a table of the distribution of a categorical (character, labelled, haven_labelled or fac-
tor) variable. Note that tableVisual is a visualFunction, compatible with the visualize and
makeDataReport functions.

Usage

tableVisual(v, vnam, doEval = TRUE)

Arguments

v The variable (vector) to be plotted.

vnam The name of the variable.

doEval If TRUE, the table itself is returned. Otherwise, the function returns a character
string containing standalone R code for producing the table.

testData 63

See Also

visualize, basicVisual, standardVisual

Examples

#Save a variable
myVar <- c("red", "blue", "red", "red", NA)

#Plot a variable
tableVisual(myVar, "MyVar")

#Produce code for plotting a variable
tableVisual(myVar, "MyVar", doEval = FALSE)

testData Extended example data to test the features of dataReporter

Description

A dataset of constructed data used as test bed when using dataReporter for identifying potential
errors in a dataset.

Usage

testData

Format

A data frame with 15 rows and 14 variables.

charVar A character vector with a single missing observation.

factorVar A factor vector with a miscoded missing observation, 999.

numVar A numeric vector

intVar An integer vector

boolVar A logical vector with three missing observations.

keyVar A character vector with unique codes for each observation.

emptyVar A numeric vector where all entries are identical.

numOutlierVar A numeric vector with a possible outlier (100).

smartNumVar A numeric vector that takes only two different values.

cprVar A character vector with levels in the format of Danish CPR numbers (social security num-
bers).

cprKeyVar A character vector with levels in the format of Danish CPR numbers (social security
numbers) with unique levels for each observation.

64 toyData

miscodedMissingVar A character vector with levels corresponding to various miscoded (non-NA)
misssing codes.

misclassifiedNumVar A misclassified factor variable, where every level is a number and a many
(12) different levels are in use.

dateVar A Date vector.

labelledVar A labelled vector with two missing observations.

Source

Artificial data

Examples

data(testData)

toyData Small example data to show the features of dataReporter

Description

An artificial dataset, intended for presenting the key features of dataReporter, which is a toolset
for identifying potential errors in a dataset.

Usage

toyData

Format

A data.frame with 15 rows and 6 variables.

pill A factor variable with two levels ("red" and "blue") and a few (correctly coded) missing
observations. This represents the colour of a pill.

events A numeric variable with one obvious outlier value (82), two miscoded missing values (999
and NaN) and a few correctly coded missing values. The number of previous events.

region A factor variable where two of the levels ("other" and "OTHER" are the same word with
different case settings. Moreover, the variable includes a Stata-style miscoded missing value
("."). Used to represent geographical regions or treatment centers..

change A numeric variable (random draws from a standard normal distribution). Representing a
change in a measured variable.

id A factor variable with unique codes for each observation (a character string with a number
between 1 and 15), i.e. a key variable.

spotifysong A factor variable that has the same level ("Irrelevant") for all observations, i.e. a
empty variable. The latest song played on Spotify.

uniqueValues 65

Source

Artificial data

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

Examples

data(toyData)

uniqueValues summaryFunction for unique values

Description

A summaryFunction type function, intended to be called from summarize to be called from summarize,
which counts the number of unique (excluding NAs) values in a variable.

Usage

uniqueValues(v, ...)

Arguments

v A variable (vector).

... Not in use.

Value

An object of class summaryResult with the following entries: $feature ("No. unique values") and
$result (the number of unique values in v).

See Also

summaryFunction, summarize, summaryResult, allSummaryFunctions

Examples

uniqueValues(c(1:3, rep(NA, 10), Inf, NaN))

https://doi.org/10.18637/jss.v090.i06

66 variableType

variableType Summary function for original class

Description

A summaryFunction type function, intended to be called from summarize, which finds the original
class of a variable. This is just the class for all objects but those of class smartNum.

Usage

variableType(v, ...)

Arguments

v A variable (vector).

... Not in use.

Value

An object of class summaryResult with the following entries: $feature ("Variable type"), $result
(the (original) class of v) and $value (identical to $result).

See Also

summarize

Examples

#For standard variables:
varX <- c(rep(c(1,2,3), each=10))
class(varX)
variableType(varX)

#For smartNum variables:
smartX <- dataReporter::smartNum(varX)
class(smartX)
variableType(smartX)

visualFunction 67

visualFunction Create an object of class visualFunction

Description

Convert a function, f, into an S3 visualFunction object. This adds f to the overview list returned
by an allVisualFunctions() call.

Usage

visualFunction(f, description, classes = NULL)

Arguments

f A function. See details and examples below for the exact requirements of this
function.

description A character string describing the visualization returned by f. If NULL (the de-
fault), the name of f will be used instead.

classes The classes for which f is intended to be called. If NULL (the default), one of
two things happens. If f is not a S3 generic function, the classes attribute of
f will be an empty character string. If f is a S3 generic function, an automatic
look-up for methods will be conducted, and the classes attribute will then be
filled out automatically. Note that the function allClasses (listing all classes
used in dataReporter) might be useful.

Details

visualFunction represents the functions used in visualize and makeDataReport for plotting the
distributions of the variables in a dataset.

An example of defining a new visualFunction is given below. Note that the minimal requirements
for such a function (in order for it to be compatible with visualize() and makeDataReport()) is
the following input/output-structure: It must input exactly the following three arguments, namely v
(a vector variable), vnam (a character string with the name of the variable) and doEval (a logical).
The last argument is supposed to control whether the function produces a plot in the graphic device
(if doEval = TRUE) or instead returns a character string including R code for generating such a plot.
In the latter setting, the code must be stand-alone, that is, it cannot depend on object available in
an environment. In practice, this will typically imply that the data variable is included in the code
snip. It is not strictly necessary to implement the doEval = TRUE setting for the visualFunction
to be compatible with makeDataReport, but we recommend doing it anyway such that the function
can also be used interactively.

Note that all available visualFunctions are listed by the call allVisualFunctions() and we
recommed looking into these function, if more knowledge about visualFunctions is required.

Value

A function of class visualFunction which has to attributes, namely classes and description.

68 visualize

See Also

allVisualFunctions, visualize, makeDataReport

Examples

#Defining a new visualFunction:
mosaicVisual <- function(v, vnam, doEval) {
thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
if (doEval) {
return(eval(thisCall))
} else return(deparse(thisCall))

}
mosaicVisual <- visualFunction(mosaicVisual, description = "Mosaicplots from graphics",

classes = allClasses())

#mosaicVisual is now included in a allVisualFunctions() call:
allVisualFunctions()

#Create a mosaic plot:
ABCvar <- c(rep("a", 10), rep("b", 20), rep("c", 5))
mosaicVisual(ABCvar, "ABCvar", TRUE)

#Create a character string with the code for a mosaic plot:
mosaicVisual(ABCvar, "ABCVar", FALSE)

#Extract or set description of a visualFunction:
description(mosaicVisual)
description(mosaicVisual) <- "A cubist version of a pie chart"
description(mosaicVisual)

visualize Produce distribution plots

Description

Generic shell function that calls a plotting function in order to produce a marginal distribution plot
for a variable (or for each variable in a dataset). What type of plot is made might depend on the data
class of the variable.

Usage

visualize(v, vnam = NULL, visuals = setVisuals(), doEval = TRUE, ...)

visualize 69

Arguments

v The variable (vector) or dataset (data.frame) which is to be plotted.

vnam The name of the variable. This name might be printed on the plots, depending
on the choice of plotting function. If not supplied, it will default to the name of
v.

visuals A list of visual functions to use on each supported variable type. We recom-
mend using setVisuals for creating this list and refer to the documentation
of this function for more details. This function allows for choosing variable-
type dependent visuals. However, if visualize() is called on a full dataset,
all visualizations must be of the same type and therefore, the all argument of
setVisuals is used.

doEval A logical. If TRUE (the default), visualize has the side effect of producing a
plot (or multiple plots, if v is a data.frame). Otherwise, visualize returns a char-
acter string containing R-code for producing the plot (or, when v is a data.frame,
a list of such character strings).

... Additional arguments used for class-specific choices of visual functions (see
details).

Details

Visual functions can be supplied using their names (in character strings) using setVisuals. Note
that only a single visual function is allowed for each variable class. The default visual settings
can be inspected by calling setVisuals(). An overview of all available visualFunctions can be
obtained by calling allVisualFunctions.

A user defined visual function can be supplied using its function name. Details on how to construct
valid visual functions are found in visualFunction.

References

Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data
Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06
(doi:10.18637/jss.v090.i06).

See Also

setVisuals, allVisualFunctions, standardVisual, basicVisual

Examples

#Standard use: Return standalone code for plotting a function:
visualize(c(1:10), "Variable 1", doEval = FALSE)

#Define a new visualization function and call it using visualize either
#using allVisual or a class specific argument:

mosaicVisual <- function(v, vnam, doEval) {
thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
if (doEval) {

return(eval(thisCall))

https://doi.org/10.18637/jss.v090.i06

70 whoami_available

} else return(deparse(thisCall))
}
mosaicVisual <- visualFunction(mosaicVisual,

description = "Mosaicplots from graphics",
classes = allClasses())

#Inspect all options for visualFunctions:
allVisualFunctions()

#set mosaicVisual for all variable types:
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",

visuals = setVisuals(all = "mosaicVisual"))

#set mosaicVisual only for character variables:
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",

visuals = setVisuals(character = "mosaicVisual"))

#this will use standardVisual, as our variable is not numeric:
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",

visuals = setVisuals(numeric = "mosaicVisual"))

#return code for a mosaic plot
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",

allVisuals = "mosaicVisual", doEval=FALSE)

#Produce multiple plots easily by calling visualize on a full dataset:
data(testData)
testData2 <- testData[, c("charVar", "factorVar", "numVar", "intVar")]
visualize(testData2)

#When using visualize on a dataset, datatype specific arguments have no
#influence:

visualize(testData2, setVisuals(character = "basicVisual",
factor = "basicVisual"))

#But we can still use the "all" argument in setVisuals:
visualize(testData2, visuals = setVisuals(all = "basicVisual"))

whoami_available Find out if the whoami package binaries is installed (git + whoami)

Description

Find out if the whoami package binaries is installed (git + whoami)

Usage

whoami_available()

whoami_available 71

Value

logical that is TRUE if whoami and git can be found

Index

∗ datasets
artData, 6
bigPresidentData, 8
exampleData, 28
presidentData, 49
testData, 63
toyData, 64

∗ misc
check, 10

allCheckFunctions, 4, 5, 6, 11, 13, 30–32,
34–40, 53

allClasses, 4, 12, 60, 67
allSummaryFunctions, 4, 5, 6, 10, 17, 49–51,

54, 59, 61, 65
allVisualFunctions, 4, 5, 5, 56, 68, 69
artData, 6

barplot, 7
basicVisual, 7, 58, 63, 69
basicVisualCFLB, 8
bigPresidentData, 8
boxplot, 35, 36

centralValue, 9, 18, 19, 21–24, 26, 27
check, 10, 12, 13, 17–26, 30–40, 47
checkFunction, 4, 11, 12, 15, 16, 27, 30–40,

46, 47
checkResult, 11, 13, 15, 30–40, 61
classes, 16
classes<- (classes), 16
countMissing, 16, 18, 19, 21–24, 26, 27

defaultCharacterChecks, 11, 17, 53
defaultCharacterSummaries, 18, 54, 59
defaultDateChecks, 11, 18, 53
defaultDateSummaries, 19, 54
defaultFactorChecks, 11, 20, 53
defaultFactorSummaries, 20, 54, 59
defaultHavenlabelledChecks, 11, 21, 53

defaultHavenlabelledSummaries, 21, 54,
59

defaultIntegerChecks, 11, 22, 53
defaultIntegerSummaries, 23, 54, 59
defaultLabelledChecks, 11, 23, 53
defaultLabelledSummaries, 24, 54, 59
defaultLogicalChecks, 11, 25, 53
defaultLogicalSummaries, 25, 54, 59
defaultNumericChecks, 11, 26, 53
defaultNumericSummaries, 26, 54, 59
description, 27
description<- (description), 27

exampleData, 28

identifyCaseIssues, 30
identifyLoners, 31
identifyMissing, 13, 32
identifyNums, 33
identifyOutliers, 34
identifyOutliersTBStyle, 35
identifyWhitespace, 36
isCPR, 37
isEmpty (isSingular), 39
isKey, 38
isSingular, 39
isSupported, 40

makeCodebook, 41
makeDataReport, 7, 12, 13, 16–26, 37–40, 41,

47, 52–57, 61, 62, 67, 68
mc, 35
messageGenerator, 13, 46
minMax, 19, 23, 27, 48, 61

plot, 7
presidentData, 49

quantile, 50
quartiles, 19, 23, 27, 50

72

INDEX 73

refCat, 51
render, 43, 51, 52

setChecks, 11, 44, 52
setSummaries, 44, 53, 58, 59
setVisuals, 44, 55, 69
smartNum, 57
sort, 10
standardVisual, 7, 57, 63, 69
summarize, 9, 10, 16, 17, 48–51, 58, 61, 65, 66
summaryFunction, 5, 10, 16, 17, 27, 49–51,

59, 60, 62, 65, 66
summaryResult, 10, 17, 49–51, 59, 61, 62, 65

tableVisual, 62
testData, 63
toyData, 64

unclass, 35, 36
uniqueValues, 18, 19, 21–24, 26, 27, 65

variableType, 18, 19, 21–24, 26, 27, 66
visualFunction, 6, 7, 16, 27, 57, 62, 67, 69
visualize, 7, 57, 58, 62, 63, 67, 68, 68

whoami_available, 70

	allCheckFunctions
	allClasses
	allSummaryFunctions
	allVisualFunctions
	artData
	basicVisual
	basicVisualCFLB
	bigPresidentData
	centralValue
	check
	checkFunction
	checkResult
	classes
	countMissing
	defaultCharacterChecks
	defaultCharacterSummaries
	defaultDateChecks
	defaultDateSummaries
	defaultFactorChecks
	defaultFactorSummaries
	defaultHavenlabelledChecks
	defaultHavenlabelledSummaries
	defaultIntegerChecks
	defaultIntegerSummaries
	defaultLabelledChecks
	defaultLabelledSummaries
	defaultLogicalChecks
	defaultLogicalSummaries
	defaultNumericChecks
	defaultNumericSummaries
	description
	exampleData
	identifyCaseIssues
	identifyLoners
	identifyMissing
	identifyNums
	identifyOutliers
	identifyOutliersTBStyle
	identifyWhitespace
	isCPR
	isKey
	isSingular
	isSupported
	makeCodebook
	makeDataReport
	messageGenerator
	minMax
	presidentData
	quartiles
	refCat
	render
	setChecks
	setSummaries
	setVisuals
	smartNum
	standardVisual
	summarize
	summaryFunction
	summaryResult
	tableVisual
	testData
	toyData
	uniqueValues
	variableType
	visualFunction
	visualize
	whoami_available
	Index

